... "But look, you found the notice, didn't you?". "Yes," said Arthur, "yes I did. It was on display in the bottom of a locked filing cabinet stuck in a disused lavatory with a sign on the door saying 'Beware of the Leopard."

The hitchhiker's guide to the (critical) planar Ising model.

Basic notation:

- V(G) vertices, F(G) faces, $\Diamond(G)$ edges, E(G) oriented edges of G;
- $\mathcal{E}(G)$ set of all even (i.e., degrees of all vertices are even) subgraphs of G;
- edge weights $x_e = \exp(-2\beta J_e)$ (or $x_e = \tanh(\beta^* J_e^*)$), parametrization $x_e = \tan(\frac{1}{2}\theta_e)$.

$$Z(G) := \sum_{C \in \mathcal{E}(G)} x(C), \qquad x(C) := \prod_{e \in C} x_e.$$

- Graphs $G^{\mathrm{F}}, G^{\mathrm{K}}, G^{\mathrm{C}}$, double cover $\Upsilon^{\times}(G)$ and the graph G^{D} : TURN THE PAGE!
- $(x_{[u_1,...,u_m]})_e := -x_e$ on edges crossing the (dual) paths linking faces $u_1, ..., u_m$ pairwise;
- $\mathcal{E}^{[v_1,\ldots,v_n]}(G)$ set of all subgraphs of G such that $v_1,\ldots,v_n \in V(G)$ have odd degrees and all other vertices are even;

$$Z^{[v_1,...,v_n]}_{[u_1,...,u_m]}(G) := \sum_{C \in \mathcal{E}^{[v_1,...,v_n]}(G)} x_{[u_1,...,u_m]}(C).$$

Kadanoff–Ceva formalism:

- spins σ_u are assigned to faces of G, disorders μ_v to vertices of G.
- real-valued fermions $\chi_c := \mu_{v_c} \sigma_{u(c)}$ are assigned to $\Upsilon(G) = \text{corners of (faces of) } G$; $\Upsilon^{\times}(G) = \text{the double-cover of } Y(G)$ ramified over each edge, vertex and face of G.
- Dirac spinor $\eta_c := \varsigma \cdot \exp[-\frac{i}{2}\arg(v(c) u(c))]$, defined on $c \in \Upsilon^{\times}(G)$ (where $\varsigma \in \mathbb{C}$: $|\varsigma| = 1$ is a fixed global prefactor, e.g. $\varsigma = e^{i\frac{\pi}{4}}$ or $\varsigma = 1$);
- (complex)-valued fermions $\psi_c := \eta_c \chi_c$.
- For a collection ϖ of vertices $v_1, \ldots, v_{n-1} \in V(G)$ and faces $u_1, \ldots, u_{m-1} \in F(G)$, let

$$\mathcal{O}_{\varpi}^{[\mu,\sigma]} := \mu_{v_1} \dots \mu_{v_{n-1}} \sigma_{u_1} \dots \sigma_{u_{m-1}};$$

 $\Upsilon_{\varpi}^{\times}(G)$ be the double-cover of $\Upsilon(G)$ ramified over each edge, vertex and face of G except over the elements of ϖ and $\Upsilon_{\varpi}(G)$ be the double-cover ramified over ϖ .

• The real-valued observables $X_{\varpi}(c) := \mathbb{E}[\chi_c \mathcal{O}_{\varpi}^{[\mu,\sigma]}]$ are spinors on $\Upsilon_{\varpi}^{\times}(G)$; the (complex)-valued observables $\Psi_{\varpi}(c) := \mathbb{E}[\psi_c \mathcal{O}_{\varpi}^{[\mu,\sigma]}] \in \eta_c \mathbb{R}$ are spinors on $\Upsilon_{\varpi}(G)$.

Propagation equation for fermions: (see the TA session)

- $X_{\varpi}(c_2) = X_{\varpi}(c_1) \cdot \cos \theta_e + X_{\varpi}(c_3) \cdot \sin \theta_e$ for each triple of (consecutive on $\Upsilon_{\varpi}^{\times}(G)$ [!]) corners surrounding a quad (edge) $e \in \Diamond(G)$), where $\theta_e := 2 \arctan x_e$.
- Smirnov's reformulation for the critical Z-invariant Ising model on isoradial graphs (rhombic lattices): for $z \in \Diamond(G)$, there exists $\Psi_{\varpi}(z) \in \mathbb{C}$ such that

$$\Psi_{\varpi}(c) = \frac{1}{2} [\Psi_{\varpi}(z) + \eta_c^2 \cdot \overline{\Psi_{\varpi}(z)}] =: \operatorname{Proj}[\Psi_{\varpi}(z); \eta_c \mathbb{R}].$$

Graphs constructed from a given planar graph G:

- vertices of G^F ↔ oriented edges and corners of G;
 vertices of G^K ↔ oriented edges of G;
- vertices of $G^{\mathcal{C}} \leftrightarrow$ corners of G;
- vertices of $\Upsilon^{\times}(G) \leftrightarrow double \ cover \ of \ corners \ of \ G;$
- G^{D} : bipartite, two vertices (of different colors) per corner of G.

