
The hitchhiker’s guide to the (critical) planar Ising model. TA1.
Solutions.

Problem 1 (Kasteleyn’s theorem). Recall that, for an antisymmetric (2n) × (2n) ma-
trix A, the Pfaffian of A is defined as

Pf[A] := (2nn!)−1
∑

π∈S2n
(−1)sign(π)aπ(1)π(2) . . . aπ(2n−1)π(2n).

(a) Prove the identity (Pf[A ])2 = | detA|.
Recall that a Kasteleyn orientation of edges of a planar graph is defined by the property

that each face has odd number of edges oriented clockwise, and let A = −A> be a signed
(according to such an orientation) adjacency matrix of a finite planar graph.
(b) Prove the Kasteleyn theorem:

Zdimers(G) := (2nn!)−1
∑

π∈S2n
|aπ(1)π(2) . . . aπ(2n−1)π(2n)| = |Pf[A] |.

Solution. (a). Let us start with an “linear algebra” solution. Given an antisymmetric
matrix A one can consider the 2-form

ω =
2n∑
i,j=1

Aijdxi ∧ dxj.

Since A is antisymmetric, this form is correctly defined and one can see from the definition
of the Pfaffian that

ωn = Pf[A] dx1 ∧ · · · ∧ dxn.
Using this observation one concludes that Pf[UTAU ] = (detU) · Pf[A] for any matrix U .
Recall that any antisymmetric matrix is of the form

UT

(
0 P
−P T 0

)
U

for some orthogonal matrix U with determinant equal to 1. Computing Pfaffians of both
sides of this identity we get

Pf[A] = Pf

[(
0 P
−P T 0

)]
= detP = ±

√
detA.

Another way to solve the problem is to play with combinatorics of perfect matchings.
Step 1. Let K2n be the complete graph on 2n vertices labeled by 1, 2, . . . , 2n and D be

a perfect matching of K2n. Given a permutation π ∈ S2n let us write π ∼ D if the perfect
matching D is given by edges (π(1), π(2)), . . . , (π(2n− 1), π(2n)). Define

wt(D) := (−1)sign(π)aπ(1)π(2) . . . aπ(2n−1)π(2n)

where π ∈ D. Assume that π′ ∈ D. Then π′ differs from π by k transpositions, so
(−1)sign(π) = (−1)k·(−1)sign(π

′), but, on the other hand, aπ(1)π(2) . . . aπ(2n−1)π(2n) = (−1)kaπ(1)π(2) . . . aπ(2n−1)π(2n)
due to the fact that A is antisymmetric. It follows that wt(D) does not depend on the choice



of π. It is easy to see that the number of permutations that correspond a given perfect
matching is equal to n!2n. We conclude that

Pf[A] =
∑

D – is perfect
matching for K2n

wt(D).

Step 2. If D1, D2 are two perfect matchings then D1 ∪D2 defines a decomposition of K2n

into a disjoint union of even cycles and edges (an edge occurs in this decomposition if it
belongs to both D1 and D2). Let π ∈ S2n and π = s1 ◦ · · · ◦ sk is its cyclic decomposition.
Let us write that π ∼ D1 ∪D2 if sj’s corresponds to the cycles from D1 ∪D2 defined (edges
are considered as cycles of length two, i.e. as transpositions). Note that if π ∼ D1 ∪ D2

then one can always find π1 ∼ D1 and π2 ∼ D2 such that π = π1 ◦ π−12 . In particular,
(−1)sign(π) = (−1)sign(π1) · (−1)sign(π2) and we have

(−1)sign(π)a1,π(1) . . . a2n,π(2n) = wt(D1) · wt(D2).

Notice that π corresponds to D1 ∪D2 for some D1, D2 if and only if all cycles of π are even.
Let us call those permutations even. Using the observation above one can easily check that

∑
π – even

(−1)π
2n∏
j=1

ajπ(j) =
∑

D1,D2 – perfect
matchings for K2n

wt(D1) · wt(D2) = Pf[A]2.

Step 3. Write

detA =
∑

π – even

(−1)π
2n∏
j=1

ajπ(j) +
∑

π – not even

(−1)π
2n∏
j=1

ajπ(j).

Due to the previous step it remains to show that the second summand is this expression is
zero. Assume that π is not even. If π has a fixed point, say, π(j) = j, then

∏2n
j=1 ajπ(j) = 0

since aj,j = 0 because A is antisymmetric. Now let π = s1s2 . . . sk where sj is a cyclic
permutation and assume that s1 is an odd cycle of length greater then 1. Then let π′ =
s−11 s2 . . . sk. Then the fact that A is antisymmetric implies that

(−1)sign(π)
2n∏
j=1

ajπ(j) = −(−1)sign(π
′)

2n∏
j=1

ajπ′(j).

Using this observation one can easily prove that all non-zero summands in the sum

∑
π – not even

(−1)π
2n∏
j=1

ajπ(j)

cancels out.
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(b). Note that if A is the adjacency matrix then aπ(1)π(2) . . . aπ(2n−1)π(2n) is non-zero only
if the pair of vertices (π(2n− 1), π(2n)) form an edge in the graph, so we find that

Pf[A] = (2nn!)−1
∑
π∈S2n

(−1)sign(π)aπ(1)π(2) . . . aπ(2n−1)π(2n)

=
∑

D is perfect
matching

wt(D).

What we need to show is that if A is a Kasteleyn matrix, then the sing of wt(D) is the same
for any perfect matching D.

Let D1 and D2 be two perfect matchings and let π1 ∼ D1, π2 ∼ D2 be chosen such that
cycles of the permutation π := π1 ◦ π−12 correspond to the cycles of the decomposition given
by D1 ∪D2. Let us write π = s1 ◦ · · · ◦ sk where sj’s are corresponding cycle permutations.
Since sj’s are even we get that (−1)π = (−1)k. Is follows that (cf. Step 2 above)

wt(D1) · wt(D2) =
k∏
j=1

− ∏
(u,v)∈sj

au,v


where (u, v) ∈ sj if s(u) = v and u 6= v. Thus, to show that wt(D1) · wt(D2) is positive we
need to show that

∏
(u,v)∈sj au,v is negative for any j. From now on let us consider sj as an

oriented cycle on the graph. Then (u, v) ∈ sj if the corresponding oriented edge belongs to
this cycle. Denote by e(sj) the number of edges from sj such that the orientation of sj does
not coincide with the Kasteleyn orientation them. We have

sign

 ∏
(u,v)∈sj

au,v

 = (−1)e(sj).

Let us show that e(sj) is odd for any j. Let Gj be the subgraph of G that consists of all
vertices that lie inside sj or belong to sj (here we use the planar structure of G!!). Since all
the cycles sj are non-intersecting we find that the union of sj with all the cycles si that lies
inside sj covers all vertices of Gj, thus the number of vertices of Gj is even. Applying the
Euler formula to Gj we find that

#E(Gj) + 1 = #F (Gj) mod 2.

Recall that for each face f ∈ F (Gj) there is odd number of edges oriented clockwise with
respect to this edge. Denote the number of such edges by e(f). The following identities hold
in Z/2Z:

#E(Gj) + 1 ≡ #F (Gj) ≡
∑
f∈F

e(f) ≡

≡ #{edges lying inside sj}+ length(sj) + e(sj) = E(Gj) + e(sj)

where we use that length(sj) is even. It follows that e(sj) = 1 mod 2.

Problem 2 (Kramers–Wannier duality for spins and disorders). Recall that µv1 . . . µvn
can be viewed as a random variable exp[−2β

∑
e=(uw):e∩γ[v1,...,vn] 6=∅ Jeσuσw], where γ[v1,...,vn] is

the union of disorder paths linking the vertices v1, . . . , vn ∈ V (G) pairwise (in particular, we
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impose that n is even). Let u1, . . . , um be a collection of faces and let γ[u1,...,um] be a union of
paths on the dual graph linking the faces u1, . . . , um pairwise (if m is odd then one of uj’s is
supposed to be linked with the outer face). Recall that given a collection of paths γ[u1,...,um]

we can define Z [v1,...,vn]
[u1,...,um](G). Set (−1)d := (−1)γ

[v1,...,vn]·γ[u1,...,um] where γ[v1,...,vn] · γ[u1,...,um] is
the total number of intersections between paths modulo 2.

(a) Argue that E[µv1 . . . µvnσu1 . . . σum ] = (−1)dZ
[v1,...,vn]
[u1,...,um](G) · (Z(G))−1.

(b) Using the high-temperature expansion of the dual Ising model on the double-cover
branching over u1, . . . , um prove that E∗[σ∗v1 . . . σ

∗
vnµ
∗
u1
. . . µ∗um ] = ±Z [v1,...,vn]

[u1,...,um](G) · (Z(G))−1,
where µ∗u1 . . . µ

∗
um can be defined similarly to µv1 . . . µvn by choosing paths linking u1, . . . um

(and possibly uout) on the dual graph.

Solution. (a) Recall the definition of Z [v1,...,vn]
[u1,...,um](G): set s(e) = 1 if e ∩ γ[u1,...,um] = ∅ and

s(e) = −1 in the opposite case and write

Z
[v1,...,vn]
[u1,...,um](G) :=

∑
C∈E(G;v1,...,vn)

x[u1,...,um](C)

where (x[u1,...,um])e = s(e)xe and s(C) =
∏

e∈C s(e).
Step 1. Given an even subgraph C ⊂ E(G) let us denote by C∆γ[v1,...,vn] the symmetric

difference (i.e. e ∈ C∆γ[v1,...,vn] iff e belongs only to one of C and γ[v1,...,vn]). Observe that
C 7→ C∆γ[v1,...,vn] is a bijection between E(G) and E(G; v1, . . . , vn). We have

s(C∆γ[v1,...,vn]) = (−1)d · s(C).

Step 2. Let σ = {σu}u∈F (G) be a spin configuration and let C ∈ E(G) be the corresponding
domain wall. Observe that(

m∏
j=1

σuj

)
exp

β ∑
e=(w,w‘)

Jeσwσw′

 = exp

β ∑
e=(w,w‘)

Je

 · x[u1,...,um](C).

Step 3. Let σ = {σu}u∈F (G) be a spin configuration and let C ∈ E(G) be the corresponding
domain wall. Using precious two steps observe that ∏

(ww′)∩γ[v1,...,vn] 6=∅

xσwσw′e

( m∏
j=1

σuj

)
exp(β

∑
e=(w,w‘)

Jeσwσw′) =

= (−1)d exp

β ∑
e=(w,w‘)

Je

 · x[u1,...,um](C∆γ[v1,...,vn]).

Step 4. Using previous steps write

E[µv1 . . . µvnσu1 . . . σum ] = Z−1
∑
σ

 ∏
(ww′)∩γ[v1,...,vn] 6=∅

xσwσw′e

( m∏
j=1

σuj

)
exp(β

∑
e=(w,w‘)

Jeσwσw′)

= (−1)d · Z [v1,...,vn]
[u1,...,um](G)/Z(G)
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(b) Recall that we have fixed paths γ[v1,...,vn] and γ[u1,...,um] such that γ[v1,...,vn] · γ[u1,...,um] =
0. Let us expand E∗[σ∗v1 . . . σ

∗
vnµ
∗
u1
. . . µ∗um ] via the high-temperature expansion. Using the

definition of the random variable µ∗u1 . . . µ
∗
um we can write:

E∗[σ∗v1 . . . σ
∗
vnµ
∗
u1
. . . µ∗um ] = Z−1

∑
σ∗

n∏
j=1

σ∗vj

∏
(vv′)∩γ[u1,...,un] 6=∅

(x∗e)
σ∗vσ
∗
v′

 · exp

β∗ ∑
e=(v,v′)

J∗eσ
∗
vσ
∗
v′


= Z−1

∑
σ∗

(
n∏
j=1

σ∗vj

)
· exp

β∗ ∑
e=(v,v′)

J∗e s(e)σ
∗
vσ
∗
v′


= Z−1

∑
σ∗

(
n∏
j=1

σ∗vj

)
·
∏

e=(v,v′)

(cosh(β∗J∗e ) + sinh(β∗J∗e )s(e)σ∗vσ
∗
v′)

= Z−1
(∏

e

cosh(β∗J∗e )

)∑
σ∗

n∏
j=1

σ∗vj

∏
e=(v,v′)

(1 + tanh(β∗J∗e )s(e)σ∗vσ
∗
v′)

= Z(G)−1
∑

C∈E(G;v1,...,vn)

x(C)s(C)

= Z(G)−1
∑

C∈E(G;v1,...,vn)

x[u1,...,um](C)

= Z(G)−1 · Z [v1,...,vn]
[u1,...,um](G).

Problem 3 (anti-commutativity of variables ψc = ηcµv(c)σu(c)). Recall that the spin-
disorder correlations E[µv1µv2σu1σu2 ] are defined up to a sign which has the same branching
structure as

[∏2
p=1

∏2
q=1(vp−uq)

]1/2. Argue that E[ψcψd], c 6= d (and, more generally,
E[ψcψdO[µ,σ]

$ ]) is a function of (c, d) ∈ Υ(G)×Υ(G)\{(c, c), c ∈ Υ(G)} (resp., c, d ∈ Υ$(G))
and that this function is anti-symmetric: E[ψdψc] = −E[ψcψd], c 6= d.

Solution. Currently (after Problem 2), we have two ways to define a spin-disorder correla-
tion E[µv1µv2σu1σu2 ]: one is to fix a path γ[v1,v2], then to interpret µv1µv2 as a random variable
and E[µv1µv2σu1σu2 ] as a literal expectation. Another way is to fix a path γ[u1,u2] and to set
E[µv1µv2σu1σu2 ] := Z

[v1,v2]
[u1,u2]

(G) · Z(G)−1; as we have seen in Problem 2(a) these two ways
agree up to a sign. Note that in the first case we get a function that branches when vp makes
a turn around uq (and uq is supposed to be fixed) and in the second case we get a function
that branches other way around: when uq make a turn around vp (and vp is fixed). From this
heuristics we see that the first definition is good if one wants to consider E[µv1µv2σu1σu2 ] as
a function of v1, v2 and the second works well if one consider E[µv1µv2σu1σu2 ] as a function of
u1, u2. If we want to consider E[µv1µv2σu1σu2 ] as a function of v1, v2, u1, u2, then we should
“superimpose” these two definitions. One way is to consider E[µv1µv2σu1σu2 ] as an spin-spin
correlation of a spin-flip model on the double cover branched at v1, v2. But let us present
an explicit combinatorial construction instead: hopefully, it will make the situation clear for
those who are not familiar with the construction of a branched cover. Start from some “base
point” v(0)1 , v

(0)
2 , u

(0)
1 , u

(0)
2 and a path γ[v

(0)
1 ,v

(0)
2 ] and define E[µ

v
(0)
1
µ
v
(0)
2
σ
u
(0)
1
σ
u
(0)
2

] using the first
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way (i.e. use the notion of the random variable µ
v
(0)
1
µ
v
(0)
2
). Then, extend E[µ

v
(0)
1
µ
v
(0)
2
σ
u
(0)
1
σ
u
(0)
2

]

and the path γ[v1,v2] to other vertices and faces step by step by the following procedure: if we
defined E[µv1µv2σu1σu2 ] on v1, v2, u1, u2 and want to define it on v′1, v2, u1, u2 where v1 and v′1
are connected by an edge e then we extend the path γ[v1,v2] by the edge e (or subtract e from
the path if it was presented there). In the same way we can replace v2 by any neighbor. If
we want to replace u1 with its neighbor u′1 then we first check if the edge e between these two
faces belongs to γ[v1,v2]. If e 6⊂ γ[v1,v2] then we just compute E[µv1µv2σu′1σu2 ] using the first
definition above. Otherwise we compute E[µv1µv2σu1σu2 ] and multiply it by −1. Note that
on the language of double covers the first definition of E[µv1µv2σu1σu2 ] says rouphly “take
both spins from the first sheet and compute the correlation”. When u1 crosses the cut γ[v1,v2]
then it jumps to the second sheet of the cover, so we have to switch the sign since all states
are antisymmetric with respect to the double cover involution.

As defined above E[µv1µv2σu1σu2 ] becomes a branching function under this definition with
the same branching structure as

[∏2
p=1

∏2
q=1(vp−uq)

]1/2.
Due to some technical reason (see Problem 4) it is convenient to study an observable

defined on corners c, d by E[µv(c)µv(d)σu(c)σu(d)]. If we define this function using the procedure
above then it will have branching each time the corner c or the corner d rotates by 360◦.
To get rid of this local branching we multiply E[µv(c)µv(d)σu(c)σu(d)] by ηcηd where ηc =

e
πi
4 exp(− i

2
arg(v(c) − u(c))). Since arg is multiply defined the function ηc is multivalued

but the product ηcηdE[µv(c)µv(d)σu(c)σu(d)] = E[ψcψd] then can be defined as a single-valued
function. Now let us show that E[ψcψd] = −E[ψdψc]. To show this we start moving c and
d step by step such that eventually they interchange their position. Let us choose their
trajectories to be disjoint from each other, and let us assume that the function arg(v(c) −
u(c)) − arg(v(d) − u(d)) changed its value by 2πk in the end of this procedure. Then it is
easy to observe that in the end of the day E[µv(c)µv(d)σu(c)σu(d)] was muliplied by (−1)k+1.
The anticommutativity follows. The case of E[ψcψdO[µ,σ]

$ ] can be treated exactly in the same
way.

Problem 4 (propagation equation for fermions). (a) Prove the propagation equation
X$(c2) = X$(c1) · cos θe +X$(c3) · sin θe for Kadanoff-Ceva fermions.

(Hint: note that exp[−2βJeσu[(e)σu](e)] · cos θe + σu[(e)σu](e) · sin θe = 1. )
(b) Prove Smirnov’s reformulation of the propagation equation for the critical model on
isoradial graphs: provided that ze = (v−(e)u[(e)v+(e)u](e)) is a rhombus with the half-
angle θe and the Ising weights are chosen so that xe = tan 1

2
θe, the propagation equation on

this rhombus is equivalent to the existence of a value Ψ$(ze) ∈ C such that

Ψ$(c) = 1
2
[Ψ$(z) + η2c ·Ψ$(z)] = Proj[Ψ$(z); ηcR].

Solution. (a) Recall that Xϕ(c) = E[µv(c)σu(c)O[µ,σ]
$ ] is defined via the procedure described

in the solution to Problem 3. In particular, for three consequetive corners c1, c2, c3 we know
the particular way (based on the choice of paths γv, γu) to interprete µv(c)σu(c)O[µ,σ]

$ as a
random variable. The relation in the Hint immediately implies that

µv(c2)σu(c2)O[µ,σ]
$ = µv(c1)σu(c1)O[µ,σ]

$ cos θe + µv(c3)σu(c3)O[µ,σ]
$ sin θe

from which we conclude the propagation equation.
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(b) It is clear that the existance of such a function Ψ$ on rombus implies the propagation
equation. Vise versa, using the procedure from the solution to the problem 3 we define a
complex-valued function Ψ$ on rombus by

Ψ$(ze) = E[ψ(v−(e)u[(e))] + E[ψ(v+(e)u](e))].

It is clear from the definition that if c = (v−(e)u[(e)) or c = (v+(e)u](e)) then Ψ$(c) =
Proj[Ψ$(z); ηcR]. On the other hand, the propagation equation implies that

E[ψ(v−(e)u[(e))] + E[ψ(v+(e)u](e))] = E[ψ(u](e)v−(e))] + E[ψ(u[(e))v+(e))]

so that the desired relation holds for the other two corners too.
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