The hitchhiker’s guide to the (critical) planar Ising model. TA3.

Let \(\Omega \subset \mathbb{C} \) be a bounded (not necessarily simply connected) domain, \(a \in \Omega \) and \(|\eta| = 1 \). Recall that \(f^{[\eta]}(a, \cdot) : \Omega \setminus \{a\} \to \mathbb{C} \) is defined as the unique\(!\) holomorphic function such that
\[
f^{[\eta]}(a, z) = \frac{\eta f(a, \zeta)}{\overline{z} - a} + O(1) \quad \text{as} \quad z \to a, \quad f^{[\eta]}(a, \zeta) \in (\tau(\zeta))^{-1/2} \mathbb{R}, \quad \zeta \in \partial \Omega,
\]
where \(\tau(\zeta) \) denotes the tangent vector to \(\Omega \) (oriented so that \(\Omega \) remains to the left of \(\tau(\zeta) \)).

Problem 1. (a) Prove that there exists (unique) functions \(f(a, \cdot) \) and \(f^*(a, \cdot) \) such that
\[
f^{[\eta]}(a, z) = \frac{1}{2} [\eta f(a, z) + \eta f^*(a, z)] \quad \text{for all} \quad z \in \Omega \quad \text{and} \quad |\eta| = 1.
\]
(b) Denote \(f^{[\eta,\mu]}(w, z) := \text{Re}[\overline{\mu} f^{[\eta]}(w, z)] \), where \(w \neq z \) and \(|\eta| = |\mu| = 1 \). Prove that
\[
f^{[\eta,\mu]}(z, w) = -f^{[\eta,\mu]}(w, z).
\]
Hint: Consider \(f_{\partial \Omega} f^{[\eta]}(w, \zeta) f^{[\eta]}(z, \zeta) d\zeta \).

(c) Deduce that \(f(z, w) = -f(w, z) \) and \(f^*(z, w) = -f^*(w, z) \). In particular, \(f(z, w) \) is holomorphic in both variables (except at \(z = w \)) whilst \(f^*(w, z) \) is holomorphic in \(z \) and anti-holomorphic in \(w \). Argue that the definition
\[
\langle \varepsilon_w \rangle_{\Omega}^+ := \frac{i}{2} f^*(w, w)
\]
makes sense and that \(\langle \varepsilon_w \rangle_{\Omega}^+ \in \mathbb{R} \).

(d) Prove the conformal covariance rules: if \(\varphi : \Omega \to \Omega' \) is a conformal map, then
\[
\begin{align*}
f_{\Omega}(w, z) &= f_{\Omega'}(\varphi(w), \varphi(z)) \cdot (\varphi'(w))^{1/2}(\varphi'(z))^{1/2}, \\
f^*_{\Omega}(w, z) &= f^*_{\Omega'}(\varphi(w), \varphi(z)) \cdot (\overline{\varphi'(w)})^{1/2}(\overline{\varphi'(z)})^{1/2}.
\end{align*}
\]
In particular, one has \(\langle \varepsilon_w \rangle_{\Omega}^+ = \langle \varepsilon_{\varphi(w)} \rangle_{\Omega'}^+ \cdot |\varphi'(w)| \).

Solution. (a) Obviously, if \(f, f^* \) exists, then they must satisfy
\[
\begin{align*}
f^{[1]}(a, z) &= \frac{1}{2} (f(a, z) + if^*(a, z)), \\
f^{[i]}(a, z) &= -\frac{i}{2} (f(a, z) - f^*(a, z)).
\end{align*}
\]
This system has a unique solution given by
\[
\begin{align*}
f(a, z) &= f^{[1]}(a, z) + if^{[i]}(a, z), \\
f^*(a, z) &= f^{[1]}(a, z) - if^{[i]}(a, z).
\end{align*}
\]
Using that \(f^{[\eta]} \) is real linear with respect to \(\eta \) (proven in lectures) we find that
\[
f^{[\eta]}(a, z) = f^{[1]}(a, z) \text{Re} \eta + f^{[i]}(a, z) \text{Im} \eta = \frac{1}{2} [\overline{\eta} f(a, z) + \eta f^*(a, z)],
\]
thus \(f, f^* \) indeed satisfy desired properties. Note that if \(f, f^* \) satisfy (1) for any \(\eta \) then we have \(f(a, z) = \partial/\partial \overline{\eta} f^{[\eta]}(a, z) \) and \(f^*(a, z) = \partial/\partial \eta f^{[\eta]}(a, z) \).
(b) Observe that
\[\oint_{\partial \Omega} f^{[\eta]}(w, \zeta) f^{[\mu]}(z, \zeta) d\zeta = 2\pi i (\eta f(z, w) + \overline{\eta} f(w, z)). \]
Using that Im \(\oint_{\partial \Omega} f^{[\eta]}(w, \zeta) f^{[\mu]}(z, \zeta) d\zeta = 0 \) due to the boundary conditions we get the claim.

(c) Note that \(f(z, w) = \frac{\partial}{\partial \eta} \frac{\partial}{\partial \eta} f^{[\eta,\mu]}(z, w) \), whereas \(f^*(z, w) = \frac{\partial}{\partial \eta} \frac{\partial}{\partial \eta} f^{[\eta,\mu]}(z, w) \) and \(f^*(z, w) = \frac{\partial}{\partial \mu} \frac{\partial}{\partial \eta} f^{[\eta,\mu]}(z, w) \). Using these observations and (b) we immediately get the result.

(d) Consider the function \(f^{[\eta]}_{\Omega}((\phi(w), \phi'(z))/2) \). It satisfies the same properties as \(f^{[\eta]}(w, z) \), thus we have \(f^{[\eta]}_{\Omega}((\phi(w), \phi(w)) \cdot (\phi'(z))/2 = f^{[\eta]}_{\Omega}(w, z) \) due to the uniqueness of \(f^{[\eta]}_{\Omega}(w, z) \) and we can write
\[
\frac{1}{2} \left[\eta f_{\Omega}(w, z) + \eta f_{\Omega}'(w, z) \right] = f^{[\eta]}_{\Omega}(w, z) = \]
\[
= f^{[\eta]}_{\Omega}((\phi(w), \phi(w)) \cdot (\phi'(z))/2 = \]
\[
= \frac{1}{2} \left[\eta f_{\Omega}(\phi(w), \phi(z)) \cdot (\phi'(w))/2 + \eta f_{\Omega}((\phi(w), \phi(z)) \cdot (\phi'(w))/2 (\phi'(z))/2 \right].
\]
Using that \(f(a, z) \) and \(f^*(a, z) \) are uniquely defined we get the result

Recall that the holomorphic spinor \(g_{v,u}(z) \) (defined on the double cover of \(\Omega \) ramified over \(u, v \in \Omega, u \neq v \)) is uniquely characterized by the following conditions:
\[
g_{v,u}(z) = \frac{e^{-i \pi / 4}}{\sqrt{z-v}} \cdot [1 + O(z-v)] \quad \text{as} \quad z \to v;
\]
\[
g_{v,u}(z) = \frac{e^{i \pi / 4}}{\sqrt{z-u}} \cdot [c + O(z-u)] \quad \text{as} \quad z \to u, \quad \text{with an unknown} \quad c \in \mathbb{R},
\]
and the boundary conditions \(g_{v,u}(\zeta) \in (\tau(\zeta))^{-1/2} \mathbb{R} \) for \(\zeta \in \partial \Omega \). Further, recall that \(\mathcal{A}(v, u) \) is defined as the next coefficient in the expansion of \(g_{v,u}(z) \) as \(z \to v \):
\[
g_{v,u}(z) = \frac{e^{-i \pi / 4}}{\sqrt{z-v}} \cdot [1 + 2\mathcal{A}(v, u)(z-v) + O((z-v)^2)],
\]
and that
\[
\langle \sigma_u \sigma_v \rangle^+ := \exp \left[\int \text{Re} \left[\mathcal{A}(v, u)dv + \mathcal{A}(u, v)du \right] \right],
\]
where the multiplicative normalization is chosen so that \(\langle \sigma_u \sigma_v \rangle^+ \sim |u-v|^{-1/4} \) as \(u \to v \).

Problem 2. The goal is to prove the fusion rule \(\sigma \sigma \to 1 + \frac{\pi i}{2} + \ldots \), more precisely:
\[
\langle \sigma_u \sigma_v \rangle^+ = |v-u|^{-1/4} \cdot [1 + \frac{1}{2} \langle \epsilon_v \rangle^+ \cdot |v-u| + o(|v-u|)] \quad \text{as} \quad v \to u
\]
(not using explicit expressions available in simply connected \(\Omega \)), where the correlation functions \(\langle \sigma_u \sigma_v \rangle^+ \) and \(\langle \epsilon_v \rangle^+ \) are defined above.

Denote \(\eta := e^{i \pi / 4} \cdot (\nu - \overline{\nu})^{1/2}/|v-u|^{1/2} \). First, take for granted that \(\langle \xi_v \rangle^+ \to \langle \xi_u \rangle^+ \) and
\[
g_{v,u}(z) = |v-u|^{1/2} \cdot \left[f^{[\eta]}(v, z) \cdot \left(\frac{z-v}{z-u} \right)^{1/2} + o(1) \right] \quad \text{as} \quad v \to u,
\]
uniformly on compact subsets \(z \in \Omega \setminus \{u\} \).

Remark: The right-hand side of (5) is chosen so that the difference does not blow up at \(z = v \) and approximately satisfies (3) and the boundary conditions, so it should be small.

(a) Deduce from (5) that

\[
2\mathcal{A}_{[v,u]} + \frac{1}{2(v-u)} = \langle \varepsilon_v \rangle^+_{\Omega} \cdot \frac{|v-u|}{v-u} + o(1) \quad \text{as} \quad v \to u.
\]

Hint: Consider \(\oint g_{[v,u]}(z) \cdot (z-u)^{1/2}(z-v)^{-3/2}dz \).

(b) Deduce (4) from (5) and the asymptotics \(\langle \sigma_u \sigma_v \rangle^+_{\Omega} \sim |v-u|^{-1/4} \) as \(v \to u \).

(c) Prove that \(\langle \varepsilon_v \rangle^+_{\Omega} \to \langle \varepsilon_u \rangle^+_{\Omega} \) as \(v \to u \).

Hint: Argue that each subsequential limit of \(f^{[n]}(v,\cdot) \) must coincide with \(f^{[n]}(u,\cdot) \).

(d)* Prove that (5).

Solution. We begin with the following observation. Let \(\overline{\Omega} \) be the domain in \(\mathbb{C} \) obtained by reflecting \(\Omega \) with respect to the real axis. Consider the functions \(\tilde{f} : \overline{\Omega} \times \Omega \to \mathbb{C} \) defined by \(\tilde{f}(v,z) = f^*(\overline{v},z) \). Notice that \(f^{[1]}(w,z) - i f^{[i]}(w,z) \) has a removable singularity at \(z = w \), hence \(\tilde{f} \) is defined on the whole \(\overline{\Omega} \times \Omega \). Due to the result of Problem 1(c) the function \(\tilde{f} \) is “separately” holomorphic, i.e. it is holomorphic in each variable when the other one is fixed. It follows from the Hartogs theorem that \(\tilde{f} \) is holomorphic as a function of two variables, hence we conclude that \(f^*(v,z) \) is analytic in \(\overline{v}, z \). In the same way we find that \(f(v,z) - \frac{2}{z-v} \) is holomorphic function in two variables. Notice that \(f(v,z) - \frac{2}{z-v} \) is antisymmetric, hence vanishes on the diagonal.

(a) Using the properties of \(f^{[n]} \) and the fact that \(f(v,z) = -f(z,v) \) we find that

\[
f^{[n]}(v,z) = e^{-i\frac{\pi}{4}}(v-u)^{1/2} \cdot \frac{1}{|v-u|^{1/2}(z-v)} + e^{i\frac{\pi}{4}} \cdot (\overline{v} - \overline{u})^{1/2}/|v-u|^{1/2} \langle \varepsilon_v \rangle^+_{\Omega} + O(z-v)
\]

as \(z \to v \). Substituting this relation and

\[
\left(\frac{z-v}{z-u}\right)^{1/2} = \frac{(z-v)^{1/2}}{(v-u)^{1/2}} \left(1 - \frac{z-v}{2(v-u)} + O(z-v)^2\right)
\]

into (5) we get the desired asymptotics.

(b) Due to the previous exercise we have

\[
\int \text{Re}[\mathcal{A}(v,u)dv + \mathcal{A}(u,v)du] = \int \text{Re}\left[-\frac{d(v-u)}{4(v-u)} + O(1)\right].
\]

The claim follows.

(c) As we mentioned above, the function \(f^*(v,z) \) is analytic in variables \(\overline{v}, z \) and therefore it is continuous. It follows that \(\langle \varepsilon_v \rangle^+_{\Omega} = f^*(v,v) \) is continuous too.
(d) Assume that \(u \) is fixed and \(u - v \) is small and consider the function
\[
F(z; v, u) := \left(g_{[v,u]}(z) - |v - u|^{1/2} \cdot f^{[v]}(v, z) \cdot \left(\frac{z - v}{z - u} \right)^{1/2} \right)^2.
\]

When \(z \) belongs to the boundary of \(\Omega \) we have
\[
\left(\frac{z - v}{z - u} \right)^{1/2} = 1 + O(v - u).
\]

Using the boundary conditions of \(g_{[v,u]} \) and \(f^{[v]}(v, z) \) we find that
\[
\int_{\partial \Omega} F(z; v, u) \, dz = \int_{\partial \Omega} |F(z; v, u)| \, |dz| + O(v - u)
\]

On the other hand, we have
\[
\int_{\partial \Omega} F(z; v, u) \, dz = 2\pi i \left(e^{i\pi/4} c - |v - u|^{1/2} f^{[v]}(v, u) \cdot (u - v)^{1/2} \right)^2.
\]

Using that
\[
f^{[v]}(v, u) = \frac{e^{i\pi/4} (u - v)^{1/2}}{|v - u|^{1/2} (u - v)} (1 + O(v - u))
\]
we find that
\[
\int_{\partial \Omega} F(z; v, u) \, dz = -2\pi (c - 1)^2 + O(v - u).
\]

Comparing these two expressions for the integral we get
\[
\int_{\partial \Omega} |F(z; v, u)| \, |dz| + 2\pi (c - 1)^2 = O(v - u).
\]

Now, let \(\Omega_{v,u} = \Omega \setminus \{z : |z - u| \leq |v - u|^2\} \). It follows that there exists a constant \(C > 0 \) such that
\[
\int_{\partial \Omega_{v,u}} |F(z; v, u)| \, |dz| \leq C|v - u|.
\]

Since \(F \) if holomorphic in \(\Omega_{v,u} \) we conclude that for any compact \(K \subset \Omega \setminus \{u\} \) there exists a constant \(C' \) such that such that
\[
\max_{z \in K} |F(z; v, u)| \leq C'|v - u|
\]
for provided \(|v - u| \) is small enough and (5) follows.

More information on correlations of \(\psi, \mu, \sigma, \varepsilon \) and fusion rules: [Section 4, arXiv:1605.09035]